Immunohistological labeling of microtubules in sensory neuron dendrites, tracheae, and muscles in the Drosophila larva body wall.

نویسندگان

  • Cagri Yalgin
  • M Rezaul Karim
  • Adrian W Moore
چکیده

To understand how differences in complex cell shapes are achieved, it is important to accurately follow microtubule organization. The Drosophila larval body wall contains several cell types that are models to study cell and tissue morphogenesis. For example tracheae are used to examine tube morphogenesis(1), and the dendritic arborization (DA) sensory neurons of the Drosophila larva have become a primary system for the elucidation of general and neuron-class-specific mechanisms of dendritic differentiation(2-5) and degeneration(6). The shape of dendrite branches can vary significantly between neuron classes, and even among different branches of a single neuron(7,8). Genetic studies in DA neurons suggest that differential cytoskeletal organization can underlie morphological differences in dendritic branch shape(4,9-11). We provide a robust immunological labeling method to assay in vivo microtubule organization in DA sensory neuron dendrite arbor (Figures 1, 2, Movie 1). This protocol illustrates the dissection and immunostaining of first instar larva, a stage when active sensory neuron dendrite outgrowth and branching organization is occurring (12,13). In addition to staining sensory neurons, this method achieves robust labeling of microtubule organization in muscles (Movies 2, 3), trachea (Figure 3, Movie 3), and other body wall tissues. It is valuable for investigators wishing to analyze microtubule organization in situ in the body wall when investigating mechanisms that control tissue and cell shape.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The microRNA bantam Functions in Epithelial Cells to Regulate Scaling Growth of Dendrite Arbors in Drosophila Sensory Neurons

In addition to establishing dendritic coverage of the receptive field, neurons need to adjust their dendritic arbors to match changes of the receptive field. Here, we show that dendrite arborization (da) sensory neurons establish dendritic coverage of the body wall early in Drosophila larval development and then grow in precise proportion to their substrate, the underlying body wall epithelium,...

متن کامل

Microtubules have opposite orientation in axons and dendrites of Drosophila neurons.

In vertebrate neurons, axons have a uniform arrangement of microtubules with plus ends distal to the cell body (plus-end-out), and dendrites have equal numbers of plus- and minus-end-out microtubules. To determine whether microtubule orientation is a conserved feature of axons and dendrites, we analyzed microtubule orientation in invertebrate neurons. Using microtubule plus end dynamics, we map...

متن کامل

Embryonic Origins of a Motor System:Motor Dendrites Form a Myotopic Mapin Drosophila

The organisational principles of locomotor networks are less well understood than those of many sensory systems, where in-growing axon terminals form a central map of peripheral characteristics. Using the neuromuscular system of the Drosophila embryo as a model and retrograde tracing and genetic methods, we have uncovered principles underlying the organisation of the motor system. We find that ...

متن کامل

Dendrites of Distinct Classes of Drosophila Sensory Neurons Show Different Capacities for Homotypic Repulsion

BACKGROUND Understanding how dendrites establish their territory is central to elucidating how neuronal circuits are built. Signaling between dendrites is thought to be important for defining their territories; however, the strategies by which different types of dendrites communicate are poorly understood. We have shown previously that two classes of Drosophila peripheral da sensory neurons, th...

متن کامل

Development of Connectivity in a Motoneuronal Network in Drosophila Larvae

BACKGROUND Much of our understanding of how neural networks develop is based on studies of sensory systems, revealing often highly stereotyped patterns of connections, particularly as these diverge from the presynaptic terminals of sensory neurons. We know considerably less about the wiring strategies of motor networks, where connections converge onto the dendrites of motoneurons. Here, we inve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of visualized experiments : JoVE

دوره 57  شماره 

صفحات  -

تاریخ انتشار 2011